
Ergodic Theory - Week 10

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Spectral theory of measure-preserving systems

P1. Let (X,B, µ, T ) be a measure preserving system and let f ∈ L2(X). Let µf be the spectral
measure of f and let PT f be the orthogonal projection onto the closed subspace of T -invariant
functions in L2(X). Show that:

(a) Show that for every t ∈ T, we have

µf ({t}) = ĺım
N→+∞

1

N

N−1∑
n=0

e(−nt)

∫
f̄ · Tnf dµ.

Conclude that µf ({0}) = ∥PT f∥22, where PT denotes the projection to the space of invariant
functions.

(b) If the system is ergodic, then show that µf ({0}) = 0 if and only if
∫
fdµ = 0.

(c) µf (T) = ||f ||22.

(a) Using the spectral theorem, we deduce that there exists a measure on T such that∫
f · Tnf dµ =

∫
e(nx)dµf (x)

for every n ∈ N. Therefore, the average in the right-hand side of our inequality is equal
to

1

N

N−1∑
n=0

e(−nt)

∫
e(nx)dµf (x) =

1

N

N−1∑
n=0

∫
e (n(x− t)) dµf (x) =

∫
1

N

N−1∑
n=0

e (n(x− t)) dµf (x).

Observe that

ĺım
N→+∞

1

N

N−1∑
n=0

e (n(x− t)) =

{
1, if x = t

0, otherwise
.

Using the dominated convergence theorem, we deduce that

ĺım
N→+∞

∫
1

N

N−1∑
n=0

e (n(x− t)) dµf (x) =

∫
ĺım

N→+∞

1

N

N−1∑
n=0

e (n(x− t)) dµf (x) =∫
1x=t dµf (x) = µf ({t}).
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In the case t = 0, we have

µf ({0}) = ĺım
N→∞

1

N

N−1∑
n=0

∫
f · Tnf = ĺım

N→∞

1

N

N−1∑
n=0

⟨Tnf, f⟩.

Now, write f = PT f +ferg where PT f is the invariant part of f and ferg is the coboundary
part of f . Using the mean ergodic theorem and the fact that PT f and ferg are orthogonal,
we get that

µf ({0}) = ĺım
N→∞

1

N

(
N−1∑
n=0

⟨TnPT f, PT f⟩+ ⟨Tnferg, PT f⟩+ ⟨TnPT f, ferg⟩+ ⟨Tnferg, ferg⟩

)

= ĺım
N→∞

(
1

N

N−1∑
n=0

⟨PT f, PT f⟩+ ⟨Tnferg, ferg⟩

)
= ⟨PT f, PT f⟩ = ||PT f ||22,

where in the last line we used the fact that that the ergodic averages of ferg converge to
zero in L2(X).

(b) If T is ergodic, then PT f =
∫
f dµ. Thus

µf ({0}) =
∥∥∥∫ fdµ

∥∥∥2
2
=
(∫

fdµ
)2

,

from which the equivalence follows.

(c) Using the spectral theorem we have that

µ(T) =
∫
T
dµf =

∫
X
f · fdµ = ||f ||22.

P2. Let {a(n)}n∈N be a sequence in N such that for every β ∈ (0, 1),

ĺım
N→∞

1

N

N∑
n=1

e(a(n)β) = 0.

Suppose (X,µ, T ) is an ergodic measure-preserving system. Let f ∈ L2(µ). Prove that

ĺım
N→∞

∣∣∣∣∣∣ 1
N

N∑
n=1

T a(n)f − PT f
∣∣∣∣∣∣
L2(µ)

= 0,

where PT denotes the projection to the space of invariant functions.

Use this exercise to give another proof of von Neumann’s mean ergodic theorem.

Solution: Let β ∈ (0, 1) and f ∈ L2(µ). We can write f = g + PT f and the problem reduces
to

ĺım
N→∞

∣∣∣∣∣∣ 1
N

N∑
n=1

T a(n)g
∣∣∣∣∣∣
L2(µ)

= 0.
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Let µg be the spectral measure associated to g. Then

∣∣∣∣∣∣ 1
N

N∑
n=1

T a(n)g
∣∣∣∣∣∣2
L2(µ)

=

∫ ∣∣∣ 1
N

N∑
n=1

T a(n)g
∣∣∣2 dµ

=
1

N2

∫ N∑
n,k=1

T a(n)g · T a(k)g dµ

=
1

N2

N∑
n=1

N∑
k=1

⟨T a(n)g, T a(k)g⟩

=
1

N2

N∑
n=1

N∑
k=1

⟨T a(n)−a(k)g, g⟩

=
1

N2

N∑
n=1

N∑
k=1

∫
T
e((a(n)− a(k))x)dµg(x)

=

∫
T

( 1

N

N∑
n=1

e(a(n)x)
)( 1

N

N∑
k=1

e(−a(k)x)
)
dµg(x)

=

∫
T

∣∣∣ 1
N

N∑
n=1

e(a(n)x)
∣∣∣2dµg(x).

As ĺımN→∞
1
N

∑N
n=1 e(a(n)x) → 0 for every x ∈ T except zero (where the limit of the average

is 1), by the dominated convergence theorem, we have that the last bound tends to µg({0}) as
N → ∞. However, µg({0}) = PT g = 0 by Exercise 1a). Therefore,

ĺım
N→∞

∣∣∣∣∣∣ 1
N

N∑
n=1

T a(n)f − PT f
∣∣∣∣∣∣
L2(µ)

= 0.

P3. Let v be any continuous (that is v({x}) = 0 for all x ∈ T) Borel probability measure on the
torus T that is invariant under the maps Tpx = px (mod 1) for all p ∈ N. Show that v is the
Lebesgue measure (a famous conjecture of Furstenberg asserts that the same conclusion holds
under the much weaker assumption that the measure is invariant under T2 and T3).

Hint: For a finite Borel measure µ on T, we define its Fourier coefficients by µ̂(n) =
∫
e(nt) dµ(t).

Use the fact that if two measures have the same Fourier coefficients, then they are equal.

We will show that the measures v and λ (the Lebesgue measure on T) have the same Fourier
coefficients, that is v̂(n) = λ̂(n). If we show this, then we use linearity to deduce that∫
T P (x)dv(x) =

∫
T P (x)dλ(x) for any trigonometric polynomial and then by density we get

that for any function in f ∈ C(T) we have
∫
T f(x)dv(x) =

∫
T f(x)dλ(x). Using the regularity

of the measures, we can replace any f ∈ C(T) with indicator functions of a set, and we are
done.

We easily compute

λ̂(n) =

{
1, n = 0

0, n ̸= 0
.
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For all n ∈ N \ {0}, we have that

v̂(n) =

∫ 1

0
e2πint dv(t) =

∫ 1

0
e2πi(Tnt) dv(t) =

∫ 1

0
e2πitdv(t) = v̂(1),

where we used in the third equality the fact that the measure ν is Tn invariant.

We also easily see that v̂(−n) = v̂(n) = v̂(1) (the first equality holds for all measures).

To finish the proof, we use Wiener’s lemma and the fact that the measure is non-atomic to get
that

ĺım
N→+∞

1

N

n−1∑
n=0

|v̂(n)|2 = 0.

Since |v̂(n)|2 = |v̂(1)|2, we conclude that v̂(n) = 0 for all n ≥ 1.

Putting everything together, we get that v̂(n) = λ̂(n) for all n ∈ Z and, thus, v = λ.

P4. In this exercise, we outline the steps to prove Sárközy’s theorem: if (X,B, µ, T ) is a measure-
preserving system and A ∈ B has positive measure, then there exist infinitely many n ∈ N such
that µ(A ∩ T−n2

A) > 0.

This can be combined with a well-known argument of Furstenberg to prove that if a set E ⊆ N
has positive density, then we can always find x, y ∈ E such that x− y is a perfect square.

(a) Let f = 1A and let µf be the spectral measure of f . Show that

ĺım
N→+∞

1

N

N−1∑
n=0

∫
f · Tn2

f dµ = µf ({0}) +
∑

q∈Q∩[0,1]

µf ({q})Sq,

where

Sq = ĺım
N→+∞

1

N

N−1∑
n=0

e(qn2).

Hint: Rewrite the left-hand side in terms of the spectral measure of f and use Weyl’s
theorem to eliminate the contribution of the irrationals in the integral.

Using the spectral theorem, we get a measure µf on the torus, such that∫
f · Tnf dµ =

∫
e(nt) dµf (t)

for every n ∈ N. Therefore, the desired average is equal to

ĺım
N→+∞

1

N

N−1∑
n=0

∫
f ·Tn2

f dµ = ĺım
N→+∞

1

N

N∑
n=1

∫
e(n2t) dµf (t) = ĺım

N→+∞

∫
1

N

N∑
n=1

e(n2t) dµf (t)

When t is irrational, we have that

ĺım
N→+∞

1

N

N∑
n=1

e(n2t) = 0,
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since the sequence (n2t)n∈N is uniformly distributed (mod 1). On the other hand, in the
case where t is rational, the sequence e(n2t) is periodic. Therefore, the averages converge
to some number (denoted by Sq in the statement), which is bounded in modulus by 1.
By the dominated convergence theorem, we conclude that

ĺım
N→+∞

∫
1

N

N∑
n=1

e(n2t) dµf (t) =

∫
ĺım

N→+∞

1

N

N∑
n=1

e(n2t) dµf (t) =

∫
T
1x=q∈Q∩[0,1]Sq dµf (x).

We conclude that the original limit is equal to∑
q∈Q∩[0,1]

µf ({q})Sq

and the conclusion follows by simply noting that S0 = 1.

(b) Repeat the previous step to show that if W is any positive integer, then

ĺım
N→+∞

1

N

N−1∑
n=0

∫
f · T (Wn)2f dµ =

∑
q∈A1

µf ({q}) +
∑

q∈(Q∩[0,1])\A1

µf ({q})SW,q (1)

where A1 consists of the rationals q ∈ Q for which W 2q is an integer and

SW,q = ĺım
N→+∞

1

N

N−1∑
n=0

e(q(Wn)2).

The proof is the same as in the previous part. We eventually find that the limit is equal
to ∑

q∈(Q∩[0,1])

µf ({q})SW,q

and we get the desired result bu noting that if W 2q is an integer, then e((W 2qn2) = 1 for
all n ∈ N, which implies that SW,q = 1.

(c) Show that we can pick W sufficiently large to make the contribution of the second sum
negligible. Namely, for every ε > 0, show that we can pick W ∈ N, such that

ĺım
N→+∞

∣∣∣∣∣ 1N
N−1∑
n=0

∫
f · T (Wn)2f dµ

∣∣∣∣∣ ≥ µf ({0})− ε.

Conclude that µ(A ∩ T−(Wn)2A) > 0 for infinitely many n ∈ N.

Let ε > 0. We observe that the sum ∑
q∈Q∩[0,1]

µf ({q})

converges. Therefore, there exists a finite set F of rationals, such that∑
q /∈F

µf ({q}) < ε.

We pick W to be the product of all the denominators appearing in the finite set F , so
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that Wq ∈ N for every q ∈ F . Then, using part b) for this choice of W , we have that

ĺım
N→+∞

1

N

N−1∑
n=0

∫
f · T (Wn)2f dµ =

∑
q∈A1

µf ({q}) +
∑

q∈(Q∩[0,1])\A1

µf ({q})SW,q.

Using the triangle inequality, we deduce that the left-hand side in the previous equality
is larger than∣∣∣∣∣∣

∑
q∈A1

µf ({q})

∣∣∣∣∣∣−
∣∣∣∣∣∣

∑
q∈(Q∩[0,1])\A1

µf ({q})SW,q

∣∣∣∣∣∣ ≥
∑
q∈A1

µf ({q})−
∑

q∈(Q∩[0,1])\A1

µf ({q})|SW,q| ≥

µf ({0})−
∑

q∈(Q∩[0,1])\A1

µf ({q}) > µf ({0})− ε,

since ∑
q∈(Q∩[0,1])\A1

µf ({q}) ≤
∑
q /∈F

µf ({q}) < ε.

We infer that

ĺım
N→+∞

∣∣∣∣∣ 1N
N−1∑
n=0

∫
f · T (Wn)2f dµ

∣∣∣∣∣ ≥ µf ({0})− ε

or, equivalently (f = 1A),

ĺım
N→+∞

∣∣∣∣∣ 1N
N−1∑
n=0

µ(A ∩ T−(Wn)2A)

∣∣∣∣∣ ≥ µf ({0})− ε.

By Exercise 1, we have

µf ({0}) = ∥PT1A∥2L2(µ) ≥ ∥PT1A∥2L1(µ) =

(∫
|PT1A| dµ

)2

≥
(∫

PT1A dµ

)2

= (µ(A))2 ,

since ∫
PT1A dµ =

∫
1A dµ+

∫
(PT1A − 1A)

∈Herg

dµ =

∫
1A dµ.

Picking ε sufficiently small, the theorem follows.
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